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Abstract

Development of potent and safe vaccines is the utmost 
goal for all vaccinologists worldwide. Toxoplasmosis is a zoo 
notic disease affecting almost all the warm-blooded animals 
and caused by the intracellular protozoan parasite Toxoplas-
ma gondii. Up to date, neither potent nor broad spectral 
vaccine against vulnerable hosts to T. gondii is available. The 
complexity of life cycle and various parasitic stages render 
the vaccine development against such parasite is far from 
straight forward. In the last decade, tremendous advances 
were achieved in the field of vaccine development against 
T. gondii. Vaccine studies against T. gondii were focused ini-
tially on the live, attenuated live and killed tachyzoite para-
sites. Although such kinds of vaccine achieved a variable de-
gree of success, their use was restricted because of worries 
about the induced pathogenicity and expected high cost of 
manufacturing. As a result, vaccinologists shift their interest 
to the recombinant DNA and protein antigens. Since that 
time, numerous successful studies were reported indicating 
the effectiveness of recombinant DNA or protein as vaccine 
antigens. In this review, we will represent summarized in-
formation on vaccine development against toxoplasmosis 
and will tabulate some successful vaccine antigens using re-
combinant DNA or protein approach using an experimental 
murine model in a period from 2006 to 2018 using PubMed 
database.
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Background

Toxoplasma gondii (T. gondii) is an obligatory intracellular pro-
tozoan parasite. It belongs to the family Sarcocystidae, in the phy-
lum Apicomplexa which includes also other important parasites 
such as Plasmodium (the cause of malaria), Eimeria (the cause 
of coccidiosis) and Neospora (the cause of neosporosis in cattle). 
Four stages capable of inducing infection during the develop-
ment of such parasite include tachyzoite, bradyzoite, merozoite, 

and sporozoite. Although T. gondii is a single celled-organism, it 
possesses a well structured and accommodated organelles ren-
dered it as a model for studying immune responses and other 
aspects of host-parasite interactions. Secretory organelles such 
as rhoptries, micronemes, and dense granules are considered 
of special concern in T. gondii because of their role in develop-
ment, invasion and survival of the parasite inside the host cell.
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Toxoplasmosis in farm animals 

There are several reports on abortion in sheep caused by T. 
gondii [1,2]. Sheep are considered as one of the highly suscep-
tible animal species against toxoplasmosis. It can be infected 
by ingestion of contaminated food or water with sporulated 
oocysts. While toxoplasmosis commonly affects sheep and 
inducing huge economic losses, other reports of clinical toxo-
plasmosis in other farm animals. In pigs, T. gondii infection has 
been investigated because undercooked pork containing tissue 
cyst is incriminating as an important source of human toxoplas-
mosis. There are many reports about the prevalence of T. gon-
dii infection in pigs in different countries. It has been revealed 
that experimental infection during pregnancy can cause vertical 
transmission and abortion [3,4]. In goats, natural outbreaks of 
toxoplasmosis were also reported. The clinical signs are mainly 
abortions and stillbirths. Isolation of viable parasites from the 
placenta and aborted kids has been detected [5]. Cattle appear 
to be less susceptible to toxoplasmosis than sheep, goats, and 
pigs. Few reports of abortion due to toxoplasmosis in cattle have 
been described. There is a study demonstrated the isolation of 
viable T. gondii from a naturally aborted calf [6]. However, it has 
been shown that experimental infection can induce transpla-
cental transmission and abortion [7]. 

Toxoplasmosis in laboratory animals

Experimental animals can be divided into two groups ac-
cording to their susceptibility to T. gondii infection, rats and 
Old World monkeys are categorized in a resistant group, whilst 
mice, hamsters, guinea pigs and New World monkeys in the 
susceptible group. The variable animal species are usually used 
according to the different experimental purposes because of 
showing different immunological and pathological aspects. 
However, mice are commonly used because of their small size 
and the adequacy for studying immunological interaction and 
progress. Different mouse strains can be used, such as C57BL/6, 
BALB/c, NMRI, Swiss-Webster, or C3H. Despite the mouse is a 
natural host of T. gondii, other species might be more suitable 
for the study of some properties of toxoplasmosis [8].

Target of vaccine antigens derived from T. gondii

Much of the vaccine studies of T. gondii have focused on sur-
face membrane antigens and antigens released from secretory 
organelles. There are several surface antigens have been identi-
fied as antigenic and immunogenic antigens. For example, SAG1, 
SAG2, and SRS1 (SAG1-related sequence 1) or SRS2 (SAG1-relat-
ed sequence 2) [9]. Rhoptries produce two types of proteins; 
rhoptry proteins (ROPs) which have numerous targets in the 
host cell, and another subset of rhoptry proteins are called RONs 
which have been demonstrated to target the moving junction 
[10]. Micronemes secrete a group of products which provide 
important keys and strategies for cellular processes, including 
gliding motility, active cell invasion, and migration through cells 
[11]. The successful establishment of infection relies on a char-
acteristic phenomenon of some protozoan parasites including 
T. gondii, residing in a parasitophorous vacuole (PV), which is a 
well-protected area inside the host cell. The PV in the host cell 
is controlled with various proteins released from abundantly 
distributed organelles in the zoite cytosol called dense gran-
ules [12]. Basic organelles such as mitochondrion, Golgi bodies, 
endoplasmic reticulum and others are also well developed and 
exert their basic functions essential for growth, multiplication, 
and development of T. gondii either in vivo or in vitro [13-16].

Immune response to T. gondii

In the immunecompetent animals, the developed immune 
responses can lead to effectively controlling the infection and 
protecting against infection or reinfection with T. gondii. Gener-
ally, the cell-mediated immunity is responsible for controlling 
the intracellular T. gondii. However, antibodies also contribute 
in combating the infection. The cytokine gamma Interferon 
(IFN-γ) has been reported as an essential mediator of resis-
tance against T. gondii. It stimulates the macrophages to kill 
intracellular parasites and activates cytotoxic T cells to destroy 
infected cells [17]. The crucial role of T cells against T. gondii 
infection has been demonstrated in a number of studies. It was 
also shown that the cytotoxic CD8+ T cells produced IFN-γ and 
interleukin-2 (IL-2) [18,19]. Added to the cytotoxic T cells, the 
helper T cells are also effective against toxoplasmosis. They are 
generally grouped into T Helper 1 (Th1) and T Helper 2 (Th2) 
subpopulations based on the type of cytokines they produce. 
The Th1 cells secrete IFN-γ, interleukin-2 and beta Tumor Ne-
crosis Factor (TNF-β whereas the Th2 cells produce IL-4, IL-5, IL-
10 and IL-13 [20]. Protective immunity against toxoplasmosis is 
predominantly attributed to a Th1 type of response [21]. How-
ever, antibodies also contribute to controlling the infection. For 
example, in in vitro study, specific antibodies against SAG1 could 
prevent the invasion of human fibroblast cells by tachyzoites 
[22]. In in vivo, antibodies might prevent the dissemination of 
extracellular stages via neutralization through opsonisation or 
complement activation [23,24].

Current status of vaccine development against toxoplasmo-
sis

The complexity of life cycle and numerous developmental 
stages of different infective pathways, making the development 
of a potent vaccine against toxoplasmosis is not an easy task 
[25,26]. Currently, there is no large-scale, effective and safe vac-
cine can be used in the field. Toxovax is a live vaccine using S48 
strain of T. gondii, it was originally developed for immunization 
of pregnant ewes to reduce abortion. Anyway, limited protec-
tion in sheep, the risk of infection, and inability to use in other 
animals restricted its field application and use [26]. In case of 
the first attempts of vaccine development against T. gondii, live 
or attenuated vaccines were mostly investigated. Live vaccines 
could elicit both humoral and cellular immunities and inducea 
variable degree of protection. However, worries about safety 
and restoring the pathogenicity are still constraint their use in 
field applications. In the regard to attenuated, killed or lysate 
antigen vaccines, they are safer than live ones, but adjuvant is 
required for improving the triggered immune responses [27]. 
Furthermore, most development of successful chemotherapy is 
problematic. This situation makes the development of an effec-
tive and safe vaccine against T. gondiiis critical for controlling 
this parasitic infection in humans and animals.

Recombinant DNA and protein as subunit vaccine

In the last few years, numerous vaccine studies have been 
focused on the use of recombinant subunit vaccines (DNA and 
protein subunit vaccine). Such kinds of vaccines have numerous 
advantages such as the induction of long-lasting immunity, high 
safety, and low costs. In the case of DNA vaccines, the target 
gene of T. gondii is inserted into a eukaryotic vector which pos-
sesses the capacity to express the antigen inside the immunized 
host. While vaccination based on recombinant protein is de-
pending on employing of a prepared parasite antigen, which is 
expressed in a prokaryotic or eukaryotic vector in each host cell 
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in a preceding stage. In the last decade, both recombinant DNA 
and protein vaccines have been achieved significant advances 
in triggering potent immune responses and inducing high levels 
of protection. Additionally, a tremendous advance in the manu-
facturing of recombinant protein vaccines has been occurred by 
using adjuvant substances to targeted vaccine antigens [27]. 

Conclusion

In conclusion, the data represented in this review are report-
ing promising results regarding the vaccination trials with re-
combinant subunit vaccines against T. gondii. This data can be 
exploited in the development of effective and safe vaccine and 
its implementation in large animals or clinical trials. Not only 
antigens derived from essential T. gondii organelles but also 
those contributed to metabolic or vital processes could be used. 

Numerous molecules tested as recombinant DNA or protein 
vaccine have elicited cellular and humoral immune responses 
indicating their properties as immunomodulatory molecules. 
Multi-component antigens consisting of antigens of various 
structural and functional compartments may exert optimal im-
mune responses and prophylactic potentials and should be fur-
ther investigated in the future studies.
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Table 1: Vaccine studies in which recombinant DNA has been used as a vaccine candidate

Toxoplasma antigen  Experimental animal, challenge strain and protection 
index  Year [Reference]

Bradyzoite antigen (BAG), Matrix 
antigen  (MAG)

- C3H/HeN mice
- Avirulent T. gondii SSI 119 strain
- Reduced cyst formation 

2006 [28]

Apical membrane antigen 1 
(AMA1)

- BALB/c & C57BL/6 mice
- Avirulent T. gondii Beverley strain (type II)
- Survival rate (60%) & (40%) respectively 

2007 [29]

Dense granule 1 (GRA1)
- BALB/c mice
- RH (type I)
- Prolonged survival time

2007 [30]

Rhoptry 13 (ROP13)
- Kunming mice
- RH
- Prolonged survival time

2012 [31]

Immune mapped protein-1 
(TgIMP1)

- BALB/c mice
- RH
-Prolonged survival time

2012 [32]

Surface antigen 1 (SAG1) and 
14-3-3

- Kunming mice
- RH
- Prolonged survival time

2012 [33]

AMA1
- C57BL/6 mice
- PLK (type II)
- 35%

2012 [34]

Cyclophilin (Cyp)
- BALB/c mice
- RH
- 37.5%

2013 [35]

Microneme 11 (MIC11)
- BALB/c mice
- RH
- 20%

2013 [36]

MIC3, ROP18
- ICR mice
- RH
- Prolonged survival time

2013 [37]

Calcium dependent
protein kinase 3 (TgCDPK3)

- Kunming mice
- RH
- Prolonged survival

2013 [38]

ROP9
- Kunming mice
- RH
- Prolonged survival

2014 [39]

Deoxyribose Phosphate
Aldolase (TgDPA)

- Swiss Webster (SW) mice
- RH 
- Prolonged survival 

2014 [40]

Tables
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Glutathione reductase protein
- Swiss Webster mice
- RH
- Prolonged survival

2014 [41]

Glutathione-S-transferase (TgGST)
- Swiss Webster mice
- RH
- Prolonged survival

2015 [42]

SAG1, GRA2, GRA7 and ROP16
- BALB/c mice
- RH
- Prolonged survival

2015 [43]

ROP5/ROP7

- BALB/c mice
- PRU (Type II) and RH strain
-Reduce brain cyst number in PRU and prolonged survival 
in RH

2016 [44]

ROP17
- BALB/c mice
- RH
- Prolonged survival

2016 [45]

GRA1, MIC3
- BALB/c mice
- RH
- Prolonged survival

2016 [46]

ROP1
- BALB/c mice
- RH 
- Prolonged survival

2016 [47]

GRA14
- BALB/c mice
- RH 
- Prolonged survival

2017 [48]

Secreted protein with an altered 
thrombospondin repeat (TgSPATR)

- BALB/c mice
- RH 
- Prolonged survival

2017 [49]

Superoxide dismutase (TgSOD)
- BALB/c mice
- ME49 (Type II) strain
- Prolonged survival

2017 [50]

Surface antigen protein 5B 
(SAG5B) and SAG5C

- BALB/c mice
- RH
- Prolonged survival

2017 [51]

GRA17 and GRA23
- BALB/c mice
- RH 
- Prolonged survival

2017 [52]

GRA2, GRA5
- BALB/c mice
- RH
- Prolonged survival

2017 [53]

ROP54

- Kunming mice
- PRU and RH strain
-Reduce brain cyst number in PRU and prolonged survival 
in RH

2017 [54]

Cathepsin C protease-1 (TgCPC1)
- BALB/c mice
- RH
- Prolonged survival

2017 [55]

TgCDPK2 - BALB/c mice
- RH 
- Prolonged survival

2017 [56]

Profilin 
- Kunming mice
- PRU strain
- Reduce brain cyst number 

2018 [57]

ROP18, perforin-like protein 1 
(PLP1)

- Kunming mice
- PRU 
- Prolonged survival

2018 [58]
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Table 2: Vaccine studies in which recombinant protein has been used as a vaccine candidate

Toxoplasma antigen Experimental animal, challenge strain and protection index Year [Reference]

SAG1
(Protein+ complete Freund’s adjuvant)

- Dunkin Hartley guinea pigs
- 76K (type II) and C56 (type III) strain
- Reduced parasite burden in internal organs

2006 [59]

GRA1 (Protein + PROVAXTM adjuvant)
- BALB/c mice
- RH 
-Prolonged survival 

2007 [30]

GRA2, GRA6 (Protein + monophosphoryl 
lipid A adjuvant)

- CBA/J mice
- PRU
- Reduced cyst formation

2007 [60]

ROP2, ROP4 - C3H/HeJ mice
- Low virulent DX T. gondii strain (type II)
- Reduced cyst formation

2009 [61]

Actin depolymerizing factor protein 
- BALB/c mice
- RH 
- Prolonged survival

2012 [62]

SAG1 (Protein + poly lactide-co-gly-
colide)

- BALB/c mice
- RH 
- 20%

2013 [63]

ROP5 
- BALB/c mice
- RH 
- Prolonged survival

2013 [64]

ROP18
(Protein + ginsenoside Re as adjuvant)

- ICR mice
- RH 
- Prolonged survival

2013 [65]

Protein Disulfide Isomerase (TgPDI) - BALB/c mice
- RH (type I)
- 35%

2013 [66]

Profilin (PF) (Protein + Oligomannose–
coated liposome adjuvant (OML)

- C57BL/6 mice
- PLK (type II)
- 66.7%

2014 [67]

ROP18, ROP38 (Protein + poly (lactide-
co-glycolide(PLG)

-Kunming mice
-PRU
- Reduce brain cyst number 

2015 [68]

ROP5, ROP18 (Protein +poly I:C adju-
vant)

-BALB/c and C3H/HeOuJ mice
-DX and RH strain
- Reduce brain cyst number in DX and prolonged survival in RH

2015 [69]

MIC1, 4, 6
-C57BL/6
- ME49 and RH strains
-Reduce brain cyst number in ME49 and prolonged survival in RH

2015 [70]

Phosphoglycerate mutase 2 (TgPGAM 2)
-BALB/c mice
- RH strain 
- Prolonged survival

2016 [71]

TgCDPK6, ROP18 (Protein + poly(lactide-
co-glycolide) microspheres)

- Kunming mice
- PRU and RH strains
-Reduce brain cyst number in PRU and prolonged survival in RH

2016 [72]

Peroxiredoxin 3 (TgPrx3)
- C57BL/6
- PLK
- 55.6%

2016 [73]

Actin depolymerizing factor (TgADF)
-BALB/c mice
- RH 
- Prolonged survival

2016 [74]
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SAG1, GRA2 (Protein +Poly (DL-lactide-
co-glycolide) (PLGA) microspheres (MS)) 

- BALB/c mice
- RH
- Prolonged survival

2016 [75]

Aspartic protease 3 (ASP-3) - BALB/c mice
- RH 
- Prolonged survival

2017 [76]

Elongation factor 1-alpha rTgEF-1α (Pro-
tein + Freund adjuvant)

- BALB/c mice
- RH
- Prolonged survival

2017 [77]

TgPrx1
- C57BL/6
- PLK
- 66.7%

2017 [78]

Heat shock protein 70 (TgHSP70) (Pro-
tein +Alum)

- C57BL/6
- ME49 
- Reduce brain inflammation

2017 [79]

TgPI-1+ROP2, TgPI-1+GRA4, TgPI-1-
+ROP2+GRA4

- C3H/HeN mice
- ME49 
-Reduce brain cyst number

2018 [80]

ROP2 + ROP4 + SAG1 + MAG1
(Protein + Monophosphoryl lipid 
A from Salmonella enterica and Alhydro-
gel (InvivoGen))

- C3H/HeOuJ mice
- DX 
- Reduce parasite cyst in brain and neurological severity 

2018 [81]
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