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Abstract

Purpose: To quantify performance of brain and ventricle 
segmentation using weakly supervised Transfer Learning 
(TL) and cross-modality CT-to-MR deep learning models 
trained with coarse-grained versus fine-grained data to en-
able accurate segmentation using small datasets.

Methods: An IRB approved, retrospective study using 
MR and CT images was performed. Three datasets consist-
ing of roughly 2500 total images with coarse or fine annota-
tions (labels) were used for training, validation and testing 
of Convolution Neural Networks (CNNs) models. The best 
CNN architecture was used to investigate TL performance 
on segmentation, influence of training set size for TL accu-
racy and effectiveness of cross-modality TL. Dice Score (DS) 
and Percent Volume Difference (PVD) were used to quantify 
segmentation accuracy. Two-sided Wilcoxon signed rank 
with p<0.05 indicated statistical significance. 

Results: Deeper, wider models outperformed other ar-
chitectures for segmentation tasks. Ventricle segmentation 
models trained with fine-grained data improved DS from 
0.75 to 0.82 and PVD from 21.5% to 8.02% over coarse-
grained models, both statistically significant. DS and PVD 
improved when using TL over noTL (0.86 vs. 0.83, p<0.01 
and 6.87% vs. 8.02%, p=0.80, respectively). Both MR-to-MR 
and cross-modality MR-to-CT TL models trained with as few 
as 20 images showed similar results to models trained with 
100 images and vastly outperformed small training size de 
novo models. Additionally, the cross-modality TL showed 
statistically significant improved results over noTL models 
and slightly lower DS and PVD than within-modality models.

Keywords: Weakly supervised learning; Transfer learning; Se-
mantic segmentation; Convolutional neural networks; Brain 
ventricles.

Abbreviations: CNN: Convolutional Neural Network; TL: Trans-
fer Learning; noTL: No Transfer Learning (training de novo, from 
scratch); DS: Dice Score; PVD: Percent Volume Difference.

*Both authors contributed equally to this work.
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Conclusion: Brain and ventricle segmentation using 
deep and wide CNN networks outperformed shallower CNN 
models. Within-modality and cross-modality TL models 
achieved similar or superior performance compared to noTL 
models and TL models showed these results when trained 
with as little at 20% of the data of noTL models.

Introduction

Ventricular volume is routinely assessed in various acute and 
chronic neurological disorders [1-5]. As manual segmentation 
of ventricular image studies is time consuming and unrealistic in 
clinical practice, assessment of ventricular volume is routinely 
performed by qualitative inspection or by use of measures such 
as Evans’ index, frontal horn index, or fronto-occipital horn ra-
tio [6-9]. These methods are prone to inter- and intra-observer 
variability because they rely on subjective measurements and 
are of limited clinical utility where small changes in ventricular 
size carry the potential to impact patient management. To im-
prove clinical confidence, an accurate, automated ventricle seg-
mentation algorithm, and subsequent volume measurement, 
is necessary. Conventional techniques of auto-segmentation 
using atlas-based methods are problematic due to the need of 
multiple specialized software capabilities (rigid and/or deform-
able registration, atlas banking) [10]. Deep Learning (DL) could 
provide an accurate, quantitative description of ventricular vol-
ume changes with a single algorithm.

The application of DL for auto-segmentation generally re-
quires vast amounts of richly-labelled data for superior results 
[11,12], but has shown to be effective with small to modest 
data sets [13,14]. However, medical imaging data can be dif-
ficult to access, is often poorly labeled (i.e. segmented) and 
creating fine-labeled data expends significant resources. This 
deficiency can be overcome with weakly supervised machine 
Transfer Learning (TL). Weakly supervised learning is effective 
in three situations: incomplete, inexact and inaccurate supervi-
sion [15-17]. In most medical data sets, all three scenarios occur 
simultaneously. TL can be described as using a model trained 
for a specific task with one dataset to guide the learning of an-
other task with a different dataset. Of note, the pretrained data-
set is much larger than the subsequent set and the two tasks do 
not need to be identical [18]; TL has improved natural language 
processing when using pretrained models [19]. The application 
of TL requires further study for the task of auto-segmentation 
on multi-modality medical images.

This study had three objectives

1.	 Compare previously published DL architectures and opti-
mization strategies.

2.	 Quantify the benefit of TL for the segmentation of brain 
and ventricles on magnetic resonance (MR) imaging.

3.	 Quantify the effectiveness of cross-modality TL for the 
segmentation of brain and ventricles (MR to computed 
tomography, CT).

The main hypothesis was that DL models with deeper, wider 
(more parameters and outputs) architectures and transfer learn-
ing with a larger pool of fine-labelled training data will yield su-
perior performance for brain and ventricles segmentation tasks.

Materials and methods

A two-step process was used for the segmentation task. 

First, specific DL strategies were developed to segment the 
brain from the skull and scalp. Second, with the brain segment-
ed, independent strategies were implemented for ventricle seg-
mentation. Figure 1 illustrates the proposed brain and ventricle 
auto-segmentation design, as well as the evaluation of TL (MR-
to-MR and MR-to-CT). Datasets, segmentation workflow, model 
architectures and training are subsequently described.

Data

With institutional review board approval, head MR and CT 
images from patients diagnosed with a variety of pathologies 
(brain cancer, traumatic injury, vascular lesions) were used. All 
images were cropped or padded to 128 slices of 256x256 vox-
els and interpolated to 3x1x1 mm. Images were normalized by 
subtracting the mean, dividing by the standard deviation and 
scaling values to 0 to 1. 

Three distinct datasets were used: MRcoarse, MRfine and CT-
fine. The subscripts of “coarse” and “fine” reflect either coarse 
or fine annotated labeling of the images. The MRcoarse dataset 
included 2143 training and 15 validation image studies. The 
MRfine dataset consisted of 112 training and 15 validation image 
studies. The testing set for MRcoarse and MRfine consisted of 35 
images studies and further divided into Testsimple and Testcomplex 
comprised of 15 simple and 20 complex cases. Testsimple had no 
pathology within the ventricles while Testcomplex contained cases 
with lesions, hemorrhage and/or surgical cavities altering nor-
mal ventricular morphology. CTfine included 107 training, 26 vali-
dation and 27 testing images. Similarly, the CT test set was split 
into 9 simple and 18 complex cases. Training, validation and 
testing images were manually annotated by expert radiologists 
with fine-grained labels to serve as ground truth.

Segmentation workflow

The proposed weakly supervised TL workflow was applied 
to both brain and ventricle segmentation. A total of 110 MRfine 
images were used to create a segmentation atlas using the com-
mercial software MIM (MIM Software Inc. v6.9). These atlas-
based brain and ventricle segmentation models were applied to 
MRcoarse to generate a coarse dataset – i.e. coarsely segmented 
brain or ventricle images. This data was used to train coarse 
models and served as the starting point for TL models. The noTL 
models were built by training an algorithm de novo using the 
MRfine or CTfine dataset. The TL model was created by further 
training the coarse model with MRfine and CTfine datasets. Within 
modality TL refers to using the pretrained MRcoarse model and re-
fining it with the MRfine dataset and cross-modality refers to us-
ing the pretrained MRcoarse model refined with the CTfine dataset. 

Model architectures

Several deep learning Convolutional Neural Network (CNN) 
architectures were tested in this work. Further details of all 11 
model variants can be found in the supplemental materials.

A 3D variant of the UNet architecture [17,20] was imple-
mented. This architecture used convolution → activation → nor-
malization → dropout blocks and varying activation functions 
(ReLu, PReLu), normalization layers (BatchNorm, InstanceNorm, 
GroupNorm) and dropout rates. Different normalizations were 
used to overcome BatchNorm problems with small batch sizes 
due to GPU memory constraints [21]. Trilinear interpolation 
was used to reduce the number of parameters and decrease 
model inference time. 
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MeshNet convolutional models used dilated convolutions 
to increase receptive field while maintaining number of model 
parameters low allowing for faster training and inference [22]. 
This implementation used PReLu activation layer and Group-
Norm normalization. 

Residual 3D UNet is similar to 3D UNet, but adds skipped con-
nections, identity mappings and pre-activation residual layers to 
enable deeper networks to improve performance [23,24]. This ar-
chitecture used convolution → activation function → normaliza-
tion → dropout as the main block, pre-activation residual blocks 
for skipped connections, a PReLu function and InstanceNorm. 

Commonly used loss functions of binary cross entropy and 
Dice loss were implemented. Binary cross entropy required 
more iterations before convergence possibly due to an imbal-
ance between foreground and background pixels in the volu-
metric data.

Model training and evaluation

One cycle policy, mixed precision and distributed training 
was performed on 8 Nvidia 2080-Ti GPUs and used the fast.
ai (https://www.fast.ai) PyTorch distribution [25]. Addition-
ally, gradual unfreezing, discriminative fine-tuning, custom 
splits and Adam optimization were used to achieve good per-
formance and well-behaved loss convergence [21,24]. Early 
stopping and learning rate reduction were used to mitigate 
overfitting. Architectures were not modified when fine-tuning. 
Evaluation was assessed using Sorensen-Dice Score (DS) and 
Percent Volume Difference (PVD) from ground-truth. Two-sided 
Wilcoxon signed-rank test was used for hypothesis testing and 
p<0.05 was used as the significance threshold. The code and 
dataset can be requested at: http://www.medomics.ai/applica-
tions/ventricle-segmentation.

TL training set dependencies

The best performing model over all tasks was investigated as 
a function of training set size. Models without Transfer Learning 
(noTL) and TL models were trained with 10, 20, 40, 60, 80 and 
100 randomly selected images and repeated 10 times for both 
MR and CT datasets. Validation Dice scores were used for com-
parisons to test the robustness of the model created when vary-
ing training size, as opposed to model performance on test cases. 

Results

Only the best performing models - MeshNet, wide 3D UNet 
and wide 3D Residual UNet (baseline 9, baseline 6 and baseline 
11, respectively) - are shown in the main manuscript. The de-
tails of all 11 model variants are shown in Table S1. 

Brain segmentation

Dice Scores (DS) and Percent Volume Differences (PVD) for 
the brain segmentation task are shown in Table 1 and illustrates 
that most comparisons between the three architectures and 
models showed consistently decent results on brain segmenta-
tion with DS and PVD of roughly 0.97 and 2%, respectively. The 
wide 3D UNet and wide 3D Residual UNet models performed 
better on average in both DS and PVD than MeshNet models. 
However, all models had DS > 0.93 and PVD < 5%. 

Ventricle segmentation

Overall, models trained from fine-grained data showed bet-
ter performance than models trained on coarse data. Figure 2 
shows results of model performance with respect to DS and PVD 

for the Testsimple and Testcomplex cases; the corresponding table 
of the same results is shown in Table 2. The DS wide 3D UNet 
and wide 3D Residual UNet trained on fine MR data performed 
significantly better than the MeshNet fine MR model (wide 3D 
UNet fine vs. MeshNet fine, p = 0.03; wide 3D Resnet fine vs. 
MeshNet fine, p < 0.01) and all of the coarse MR trained mod-
els. In addition, there were large improvements in the PVD for 
3D Residual UNet coarse model (21.5%) to fine model (8.02%) 
with similar improvements 3D UNet. For the 3D UNet and 3D 
Residual UNet models, the complex test cases showed slightly 
lower DS compared to the simple cases (3D UNet 0.79 vs. 0.86; 
3D Residual UNet 0.75 vs. 0.82, for complex and simple cases, 
respectively), but large PVD (>25%) when compared with the 
simple cases. A single slice of the three MR segmentation mod-
els for the best and worst in the Testsimple and Testcomplex cases is 
shown in Figure 3. 

The analogous results for the fine trained CT model are shown 
in Figure 4 and Table 3 and the significance tests for all architec-
tures, fine and coarse models are presented in supplemental 
Table S3. As expected, models trained with fine CT data outper-
formed the models trained on a large set of coarsely labeled 
MR data. For 3D Unet and 3D Resnet, DS and PVD evaluated on 
the Testsimple cases were fair (around 0.75 and 18%, respective-
ly). The results on the Testcomplex cases for both coarse and fine 
model were poor with DS around 0.6 and PVD of 45%. However, 
the overall trend of better performance using baseline 9 and 
11 models was seen in the cross-modality CT data, seen below. 

Correspondingly, a single slice of the three CT segmentation 
models for the best and worst in the Testsimple and Testcomplex sets 
is shown in Figure 5. 

Within- and cross-modality TL results

The results for varying the training dataset size for noTL and 
TL for MR and CT are shown in Figure 6. The upper panels of 
Figure 6 show the results using the validation DS and the lower 
panels show the Testsimple case DS. 

The DS results for the TL MR models were 0.86 + 0.01 (mean 
+ SD) with only a slight improvement as the training sample 
increased, as seen in the top-left panel of Figure 6. The noTL 
model was 0.49 + 0.12 when using 20 samples and improved to 
0.83 + 0.02 when using 100 samples. All MR noTL and TL DS for 
the same sample sizes showed statistically significance differ-
ences. The same trend was present in the CT noTL and TL com-
parisons. The DS for the TL CT models were 0.81 + 0.01 (mean 
+ SD) with, again, only a slight improvement as the training 
sample increased, as seen in the top-right panel of Figure 6. Us-
ing 20 samples from the training set, the CT noTL DS was 0.44 + 
0.01 and when using 100 samples the noTL DS was 0.76 + 0.02. 
Likewise, all of the CT DS results were statistically different.

Transfer learning DS showed statistical significance for Testsim-

ple cases trained using the full MR dataset (noTL: 0.83, TL: 0.86, p 
< 0.01). The PVD were not significantly different between noTL 
and TL models (8.02% and 6.87%, respectively) using the full da-
taset. However, the TL model trained with 20 random samples 
yielded a PVD of 7.71% while the noTL model trained with 20 
random samples showed a PVD of 140.4% (p < 0.01). Similarly, 
both DS (0.76 vs. 0.81, p < 0.01) and PVD (19.15% vs. 12.79%, 
p=0.04) were found to have significant difference between full 
dataset trained CT noTL and TL models, respectively. Using only 
20 samples in the training, the noTL and TL showed results of 
0.44 vs. 0.79 and 206.5% vs. 16.15% (both statistically signifi-
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cant) for DS and PVD, respectively. 

The results for the Testcomplex cases, in general, were inferi-
or than the Testsimple cases for both within- and cross-modality 
models. The DS were 0.75, 0.79 and 0.78 for the full samples 
noTL MR, full sample TL MR and 20 sample TL MR models, re-
spectively; the PVD values were 28.65%, 25.90% and 27.42%. 
For reference, the DS and PVD were 0.62 and 45.31% for the 20 
sample noTL MR model. For the corresponding CT models, the 
DS / PVD were 0.70 / 28.99%, 0.71 / 28.03%, and 0.67 / 34.80% 
for the full samples noTL, full sample TL and 20 sample TL mod-
els, respectively. And, the DS and PVD were 0.50 and 105.4% for 
the 20 sample noTL CT model.

In general, the proposed TL workflow showed improvement 
in both within-modality and cross-modality models. Additional-
ly, the TL models trained on only 20 samples performed better or 
equivalent to noTL models trained with a fact or five more data.

Figure 1: An illustration of the weakly supervised transfer learn-
ing workflow for brain and ventricle segmentation. Both the brain 
and ventricle tasks follow a similar workflow, but utilize different 
input image sets – the “input” and “skull stripped,” respectively. 
Datasets are shown with rectangles and algorithmic processes are 
represented at arrows and diamonds.

Figure 2: Results for MeshNet, 3D Unet and 3D ResNet noTL MR 
ventricle segmentation models. The left column shows results for 
easy test cases and the right shown hard test cases; the top row 
shows the dice scores and the bottom row shows percent volume 
differences (inter-quartile ranges are shown). The tabular form 
along with all statistical significance tests is shown in Table 2 and 
supplemental Table S5.

Figure 3: (a): Single slice ventricle segmentation noTL MR pre-
dictions using MeshNet, 3DUNet, and 3D Residual UNet model ar-
chitectures shown for the image set with the highest and lowest 
dice score from Testsimple. The top rows show the best and worse 
dice scores for the MRcoarse dataset and the bottom rows show the 
MRfine. The results of the segmentation for the full image set can 
be accessed in the supplemental material. (3b): The corresponding 
figure showing results for the Testcomplex case.

Figure 4: Results for MeshNet, 3D Unet and 3D ResNet noTL CT 
ventricle segmentation models. The left column shows results for 
easy test cases and the right shown hard test cases; the top row 
shows the dice scores and the bottom row shows percent volume 
differences (inter-quartile ranges are shown). The tabular form 
along with all statistical significance tests is shown in supplemental 
Table S4 and Table S5.
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Figure 5: (a): Single slice ventricle segmentation noTL CT predic-
tions using MeshNet, 3DUNet, and 3D Residual UNet model archi-
tectures shown for the image set with the highest and lowest dice 
score from Testsimple. The top rows show the best and worse dice 
scores for the MRcoarse dataset and the bottom rows show the CTfine. 
The results of the segmentation for the full image set can be ac-
cessed in the supplemental material. (b): The corresponding figure 
showing results for the Testcomplex case.

Figure 6: (a): The results of noTL compared to TL for both MR 
and CT models are shown here; the noTL and TL results are shown 
in red and black, respectively in this whole figure. The top row il-
lustrates the dice score of the validation set as a function of the 
number of samples used in the training for the MR dataset (left) 
and CT dataset (right). The points show the average dice score for 
the correspond dataset and the error bar represents two times the 
standard deviation. The bottom row shows the box-and-whisker 
dice scores evaluated on the Testsimple cases: MR and CT showed on 
the left and right, correspondingly. In each panel, the left shows 
results for training with 20 samples and the right shows the entire 
dataset. The differences were statistically significant for both sets 
of comparisons. 

Brain segmentation results:

Table 1: Brain segmentation results for 3 different model architectures using coarse MR data, fine MR data 
and fine CT data. Each model was trained without transfer learning (de novo) Shown are the Dice score and per-
cent volume difference (average +/- standard deviations). 

Architecture Metric MRcoarse MRfine CTfine

3D UNet
Dice 0.96 +/- 0.01 0.96 +/- 0.01 0.98 +/- 0.01

% volume difference 1.16 +/- 0.86 2.24 +/- 1.46 1.60 +/- 0.86

MeshNet
Dice 0.96 +/- 0.01 0.94 +/- 0.01 0.93 +/- 0.03

% volume difference 1.51 +/- 1.39 3.99 +/- 2.82 4.94 +/- 2.77

3D Residual UNet
Dice 0.97 +/- 0.01 0.96 +/- 0.01 0.97 +/- 0.01

% volume difference 1.22 +/- 0.87 3.22 +/- 2.23 3.06 +/- 1.74

Table 2: Corresponding tabular form of Figure 2 ventricle segmentation results.  Results of the three best performing vari-
ants of 3D UNet, MeshNet and 3D Residual UNet Dice scores and percent volume difference evaluated for the simple and 
complex cases on the MRcoarse and MRfine models.  The mean +/- the standard deviation is shown. 

Brain segmentation results:

MRcoarse MRfine

Testeasy Testdifficult Testeasy Testdifficult

3D UNet
(baseline 9)

Dice 0.79 +/- 0.08 0.73 +/- 0.19 0.86 +/- 0.06 0.79 +/- 0.13

% volume difference 26.74 +/- 29.00 24.06 +/- 10.96 7.96 +/- 8.61 21.97 +/- 11.79

MeshNet
(baseline 6)

Dice 0.78 +/- 0.07 0.67 +/- 0.20 0.76 +/- 0.07 0.65 +/- 0.16

% volume difference 18.87 +/- 16.27 37.22 +/- 16.22 19.40 +/- 10.31 43.58 +/- 13.87

3D Residual Unet
(baseline 11)

Dice 0.80 +/- 0.08 0.73 +/- 0.11 0.82 +/- 0.07 0.75 +/- 0.12

% volume difference 21.52 +/- 26.84 32.38 +/- 20.27 8.02 +/- 9.29 28.65 +/- 8.74
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Table 3: Corresponding tabular form of Figure 4 ventricle segmentation results.  Results of the three best performing variants of 3D 
UNet, MeshNet and 3D Residual UNet Dice scores and percent volume difference evaluated for the simple and complex cases on the 
MRcoarse and CTfine models.  The mean +/- the standard deviation is shown.

MRcoarse CTfine

Testeasy Testdifficult Testeasy Testdifficult

3D UNet
(baseline 9)

Dice 0.62 +/- 0.10 0.52 +/- 0.15 0.75 +/- 0.06 0.48 +/- 0.30

% volume difference 35.18 +/- 36.69 46.23 +/- 29.41 17.57 +/- 11.71 55.02 +/- 30.31

MeshNet
(baseline 6)

Dice 0.38 +/- 0.09 0.28 +/- 0.18 0.72 +/- 0.07 0.54 +/- 0.23

% volume difference 67.10 +/- 7.38 75.33 +/- 16.83 17.30 +/- 12.08 46.62 +/- 27.70

3D Residual Unet
(baseline 11)

Dice 0.60 +/- 0.15 0.56 +/- 0.13 0.76 +/- 0.06 0.70 +/- 0.11

% volume difference 55.36 +/- 68.20 60.64 +/- 74.81 19.15 +/- 8.50 30.00 +/- 21.05

Discussion

Overall, this analysis found deeper, wider CNNs had im-
proved performance over other architectures for brain and 
ventricle segmentation tasks. Our findings are in agreement 
with other reports which utilized deeper and wider networks 
for various medical applications, such as segmentation in head 
and neck cancer cases [11,12,13,14,26,27]. Deeper, wider brain 
models showed minor, non-statistically significant improve-
ment due to the simplicity of the task. For ventricle segmenta-
tion, deep, wide architectures DS and PVD showed significant 
improvement emphasizing that applying incorrect architectures 
can greatly affect segmentation task performance. This work 
presents a superior alternative to current qualitative and semi-
quantitative methods for ventricular segmentation by introduc-
ing an autonomous, quantitative method that achieves signifi-
cant improvement compared to current semantic ventricular 
segmentation solutions. 

Deep, wide models trained with one hundred fine-grained 
images outperformed models that were trained with an order 
of magnitude more coarse-grained images. Specifically, the PVD 
results were far superior in fine models and also slightly bet-
ter than other reported results [28,29]. Testcomplex DS for fine 
models were similar to coarse models. However, fine model 
PVD was roughly a factor of three better than corresponding 
coarse models. Testcomplex results could be further improved with 
a model trained on a finely labeled dataset of ventricles con-
taining lesions, surgical cavities or other pathologies. 

The TL workflow was equivalent or superior to the noTL ap-
proach for investigated tasks. The TL approach was equivalent 
in brain segmentation and was superior for the ventricle seg-
mentation task. Within-modality TL ventricle segmentation DS 
were statistically superior than de novo models for Testsimple and 
better, although non-statistically significant, PVD. Results were 
roughly equivalent on complex cases. Cross-modality TL also 
showed improvement compared to noTL approach and could 
be further improved with a pathology-specific fine-grained 
training dataset. The use of both TL methodologies could sig-
nificantly aid in the creation of models to facilitate better care 
to patients in the neurologic community.

Weakly supervised TL was superior to de novo training with 
respect to the training data set size. The TL experiments showed 
significant DS and PVD improvements for all dataset sizes test-
ed. An acceptable model can be created with a low volume 

of finely annotated data when combined with a larger set of 
coarse-labeled data. This is especially useful for small institu-
tions where the creation of a finely labeled data set can expend 
substantial clinical resources and/or a large volume of patient 
data is unavailable for model creation. It has been reported in 
other studies that models trained with one institution’s data 
underperforms when tested at a separate institution [29]. A 
coarse segmentation model created with data from multiple 
institutions could be created first and then a clinic-specific, fine-
grained TL model then produced for certain, specific segmenta-
tion tasks thereby surmounting this previously reported issue. 

The results of this study highlight the feasibility of a tech-
nique that could have wide-ranging impact for the neuroimag-
ing community. In addition to being important in decisions of 
ventricular drainage management, accurate quantification of 
changes in ventricular volume is crucial in the assessment of 
neurodegenerative and psychiatric disease, as well as white 
matter disorders and in specific radiation treatments [1-5,31-
34]. Future work would include further optimization of models 
to improve performance. Image selection could be optimized 
for the coarse-grained model [35] and combined with fine-
grained datasets in the presence of significant ventricle distor-
tion and/or catheters present to yield superior segmentation 
models. In addition, these improvements would subsequently 
lead to a superior weakly supervised TL model. Further refine-
ment of architectures parameters and inclusion of combined 
loss functions could also improve resulting within- and cross-
modality TL models. 

Limitations of this study include the relatively small test sizes 
and lack of complete optimization of all of the experiments per-
formed. The smallest number of test cases for the simple stud-
ies were roughly 10% of training size. Regarding the optimiza-
tion, additional permutations of architecture output channels, 
normalization, activation, etc. could be investigated to com-
pletely optimize the algorithm for a given task. However, these 
concerns are mitigated by the fact that a main purpose of the 
study was the relative, inter-comparison of several variations of 
the multiple architectures investigated in this study. Neverthe-
less, the overall results of the best model showed very good 
performance with regards to both DS (~0.86) and PVD (~7%) 
compared to ground truth, and were comparable or superior to 
other reports [22,23]. 
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Conclusion

Weakly supervised TL for segmentation tasks utilizing deep, 
wide networks trained with a small volume of fine-grained data 
demonstrates superior performance compared to shallow net-
works trained with larger volumes of coarse-grained data with-
out the application of TL. These improvements were judged 
with two clinically relevant metrics (DS and PVD) and were 
seen in both within-modality and cross-modality TL models. In-
cluding fine-grained image data with both abnormal ventricle 
shapes and the presence of ventriculoperitoneal shunts in fur-
ther training sets will improve models leading to a quantitative 
tool to aid clinical decisions. The benefits of TL models com-
bined with relatively small amounts of fine-detailed datasets 
needs to be further explored for multiple segmentation tasks.

Key points

-	 Deep and wide residual CNNs perform better than other 
baseline architectures for the clinical tasks investigated in 
this study.

-	 TL methods when combined with weak supervision re-
duces the need of generating large, fine labelled data sets 
that can cost significant clinical resources

-	 In particular tasks, cross-modality TL, e.g. TL from MR to 
CT, and within-modality TL, e.g. from MR to MR shows 
superior performance than noTL models trained with 
moderate-sized datasets.

Summary statement

Weakly supervised transfer learning for deep learning tasks 
are equivalent or superior to atlas-based approaches, and 
transfer learning models can overcome the need for large, 
fine-detailed datasets in medical imaging domains where data 
collection can expend significant clinical resources or be com-
pletely unavailable.
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